Exponents & Square Roots

Vocabulary:

- 1. Exponent: part of a power that tells you how many times to use the base as a factor (multiplication)
- 2. Negative exponent: tells you that a power is less than one and should be written as a fraction
- 3. <u>Scientific Notation:</u> a way to write very large or very small numbers using powers of ten
- 4. Linear: forms a straight line
- 5. Rational Number: any number that can be written as a ratio (fraction)
- 6. Irrational Number: any number whose decimal form never repeats and never ends (most common: $\sqrt{2}$, π)

Symbols:

 $\sqrt{}$ means **Find the square root** (which number multiplied by itself produces the number inside the box)

 $\sqrt[3]{}$ means **Find the cubed root** (which number multiplied by itself 3 times would produce the number inside the box)

MGSE8.EE.1 – Properties of Exponents

Review Tips: Exponent Rules

<u>Multiplying:</u> Keep the base number, add the exponents [Example: $a^2 \bullet a^5 = a^{2+5} = a^7$]

<u>Dividing:</u> Keep the base number, subtract the exponents [Example: $\frac{b^{10}}{h^4} = b^{10-4} = b^6$]

<u>Negative:</u> move the power across the division bar and change the exponent from negative to positive [Example: $x^4 = \frac{1}{x^4}$] Zero: any number (except zero) to the zero power = 1 [Example: $4^0 = 1$, $200^0 = 1$, $(-9)^0 = 1$]

<u>Different Base Powers:</u> the exponents of different bases **cannot** be combined. [Example: $a^3b^4 = a^3b^4$]

Practice Problems:

A. 16⁴

B. 256

C. 1

D. 65,536

2 Evaluate: $\frac{3^7}{2^5}$

A. 36

C. 9

D. 3¹²

3 Evaluate: 4⁻³

A. 64

B. -64

C. -12

D. $\frac{1}{64}$

Tevaluate: 58°

A. 1

B. 58

C. 0

D. -58

MGSE8.EE.2 - Perfect Squares & Perfect Cubes

Review Tip:

- I. To "un-square" a number, you must take the square root. [Example: $3^2 = 9$ therefore $\sqrt{9} = 3$]
- II. To "un-cube" a number, you must take the cube root [Example: $5^3 = 125$ therefore $\sqrt[3]{125} = 5$]

Practice Problems:

6 Evaluate: $\sqrt{100}$

A. 10

B. 50

C. 25

D. 98

6 Evaluate: $\sqrt[3]{64}$

A. 10

B. 8

C. 21.3

D. 4

7 Find the value of x:

 $x^2 = 16$

 $A. \pm 4$

B. ± 8

C. 4

D. 8

8 Find the value of x:

 $x^3 = -8$

 $A. \pm 4$

B. +2

C. -2

D. -4

Scientific Notation

<u>MGSE8.EE.3</u> – Writing in Scientific Notation <u>MGSE8.EE.4</u> – Operations in Scientific Notation

Review Tips:

I. Numbers written in scientific notation must have only one number (1-9) in front of the decimal place.

[Correct Example: 3.45 x 10⁶ Incorrect Example: 34.5 x 10⁶]

- II. Numbers with **positive exponents** are very large numbers (greater than 1) [Example: $3.45 \times 10^6 = 3,450,000$]
- III. Numbers with **negative exponents** are very small numbers (less than 1) [Example: $3.45 \times 10^{-6} = 0.00000345$]
- IV. To <u>multiply or divide</u> numbers expressed in scientific notation, combine the coefficients first and the powers of ten second. Put in proper format if necessary.

[Example: $(2.1 \times 10^4) \times (9 \times 10^5) = (2.1 \times 9) \times (10^4 \times 10^5) = 18.9 \times 10^9 = 1.89 \times 10^{10}$]

- V. To <u>add or subtract</u> numbers in scientific notation, re-write the numbers in standard form, combine, and put back in scientific notation. [Example: $(2.1 \times 10^4) + (9 \times 10^5) = 21,000 + 900,000 = 921,000 = 9.21 \times 10^5$)
- VI. Adjusting an answer to "perfect" scientific notation:
 - i. Too big? Move the decimal and **ADD** to the exponent. [Example: $23.8 \times 10^4 = 2.38 \times 10^5$]
 - ii. Too small? Move the decimal and **SUBTRACT** from the exponent. [Example 0.238 x $10^9 = 2.38 \times 10^8$]
- VI. Standard calculators will represent a power of ten by using and "E".

[Example: 3.45 x 10⁸ on a calculator would read 3.45 E 8]

Practice Problems:

• What is 6.79×10^5 written in standard form?

A. 67,900,000

- B. 679,000
- C. 0.00000679
- D. 0.0000679
- 2 The width of a human hair is approximately 0.0002 in. What is this width written in scientific notation?

A. 2×10^3 in.

- B. 2×10^{-3} in.
- C. 2 x 10⁴ in.
- D. 2 x 10⁻⁴ in.

3 Evaluate: $(6.7 \times 10^4) \times (9.1 \times 10^6)$

A. 6.097 x 10¹¹

- B. 6.097 x 10¹⁰
- C. 6.097×10^9
- D. 60.97 x 10¹⁰

• How many times larger is (5.4×10^6) than (9×10^3) ?

 $A. 0.6 \times 10^3$

- B. 6×10^3
- $C. 6 \times 10^{2}$
- D. 6×10^4

S Subtract: $(3.4 \times 10^5) - (2.1 \times 10^4)$

A. 3.19×10^3

- B. 3.19×10^5
- C. 1.3×10^{1}
- D. 1.3 x 10⁵

6 Add: $12,000 + (3.4 \times 10^5)$

A. 4.6×10^5

- B. 4.6×10^9
- C. 3.52×10^5
- D. 3.52×10^3
- Which value would be the most likely measurement of the distance from the earth to the moon?

A. 1.3 x 10⁹ ft.

- B. 1.3 x 10¹⁰⁰ ft.
- C. 1.3 x 10⁻⁹ ft.
- D. 1.3×10^2 ft.
- **8** The display on a calculator reads 9.378 E -5. Which value does this represent?

A. 937,800,000

- B. 937,800
- C. 0.00009378
- D. 0.000009378